Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Virchows Arch ; 480(5): 967-977, 2022 May.
Article in English | MEDLINE | ID: covidwho-1748491

ABSTRACT

Ultrastructural analysis of autopsy samples from COVID-19 patients usually suffers from significant structural impairment possibly caused by the rather long latency between death of the patient and an appropriate sample fixation. To improve structural preservation of the tissue, we obtained samples from ventilated patients using a trans-bronchial "cryobiopsy" within 30 min after their death and fixed them immediately for electron microscopy. Samples of six COVID-19 patients with a documented histopathology were systematically investigated by thin section electron microscopy. The different samples and areas inspected revealed the ultrastructural correlates of the different phases of diffuse alveolar damage, including detachment of the alveolar epithelium, hyperplasia of type 2 cells, exudates, and accumulation of extracellular material, such as the hyaline membranes and fibrin. Macrophages and neutrophilic granulocytes were regularly detected. Structural integrity of endothelium was intact in regions where the alveolar epithelium was already detached. Aggregates of erythrocytes, leukocytes with fibrin, and thrombocytes were not observed. Coronavirus particles were only found in and around very few cells in one of the six patient samples. The type and origin of these cells could not be assessed although the overall structural preservation of the samples allowed the identification of pulmonary cell types. Hence, the observed alveolar damage is not associated with virus presence or structural impairment due to ongoing replication at later stages of the disease in fatal cases, which implies that the lung damage in these patients is at least propagated by alternative mechanisms, perhaps, an inappropriate immune or stress response.


Subject(s)
COVID-19 , Lung , Autopsy , COVID-19/pathology , Fibrin , Humans , Lung/pathology , Lung/ultrastructure , SARS-CoV-2
2.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1314665

ABSTRACT

Lung fibrosis has specific computed tomography (CT) findings and represents a common finding in advanced COVID-19 pneumonia whose reversibility has been poorly investigated. The aim of this study was to quantify the extension of collagen deposition and aeration in postmortem cryobiopsies of critically ill COVID-19 patients and to describe the correlations with qualitative and quantitative analyses of lung CT. Postmortem transbronchial cryobiopsy samples were obtained, formalin fixed, paraffin embedded and stained with Sirius red to quantify collagen deposition, defining fibrotic samples as those with collagen deposition above 10%. Lung CT images were analyzed qualitatively with a radiographic score and quantitatively with computer-based analysis at the lobe level. Thirty samples from 10 patients with COVID-19 pneumonia deceased during invasive mechanical ventilation were included in this study. The median [interquartile range] percent collagen extension was 6.8% (4.6-16.2%). In fibrotic compared to nonfibrotic samples, the qualitative score was higher (260 (250-290) vs. 190 (120-270), p = 0.036) while the gas fraction was lower (0.46 (0.32-0.47) vs. 0.59 (0.37-0.68), p = 0.047). A radiographic score above 230 had 100% sensitivity (95% confidence interval, CI: 66.4% to 100%) and 66.7% specificity (95% CI: 41.0% to 92.3%) to detect fibrotic samples, while a gas fraction below 0.57 had 100% sensitivity (95% CI: 66.4% to 100%) and 57.1% specificity (95% CI: 26.3% to 88.0%). In COVID-19 pneumonia, qualitative and quantitative analyses of lung CT images have high sensitivity but moderate to low specificity to detect histopathological fibrosis. Pseudofibrotic CT findings do not always correspond to increased collagen deposition.


Subject(s)
COVID-19/complications , Collagen/metabolism , Pulmonary Fibrosis/diagnosis , SARS-CoV-2/isolation & purification , Tomography, X-Ray Computed/methods , Aged , Autopsy , COVID-19/epidemiology , COVID-19/virology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/virology , Retrospective Studies
3.
BMC Infect Dis ; 21(1): 353, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1190057

ABSTRACT

BACKGROUND: The primary objective of the study is to describe the cellular characteristics of bronchoalveolar lavage fluid (BALF) of COVID-19 patients requiring invasive mechanical ventilation; the secondary outcome is to describe BALF findings between survivors vs non-survivors. MATERIALS AND METHODS: Patients positive for SARS-CoV-2 RT PCR, admitted to ICU between March and April 2020 were enrolled. At ICU admission, BALF were analyzed by flow cytometry. Univariate, multivariate and Spearman correlation analyses were performed. RESULTS: Sixty-four patients were enrolled, median age of 64 years (IQR 58-69). The majority cells in the BALF were neutrophils (70%, IQR 37.5-90.5) and macrophages (27%, IQR 7-49) while a minority were lymphocytes, 1%, TCD3+ 92% (IQR 82-95). The ICU mortality was 32.8%. Non-survivors had a significantly older age (p = 0.033) and peripheral lymphocytes (p = 0.012) were lower compared to the survivors. At multivariate analysis the percentage of macrophages in the BALF correlated with poor outcome (OR 1.336, CI95% 1.014-1.759, p = 0.039). CONCLUSIONS: In critically ill patients, BALF cellularity is mainly composed of neutrophils and macrophages. The macrophages percentage in the BALF at ICU admittance correlated with higher ICU mortality. The lack of lymphocytes in BALF could partly explain a reduced anti-viral response.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/epidemiology , COVID-19/immunology , Leukocyte Count , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Respiration, Artificial , Adult , Aged , Bronchoalveolar Lavage Fluid/virology , COVID-19/mortality , COVID-19/virology , Critical Illness/epidemiology , Female , Humans , Intensive Care Units , Italy/epidemiology , Lymphocytes/cytology , Macrophages/cytology , Male , Middle Aged , Neutrophils/cytology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Survivors/statistics & numerical data , Treatment Outcome
6.
Virchows Arch ; 478(3): 471-485, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-807933

ABSTRACT

Data on the pathology of COVID-19 are scarce; available studies show diffuse alveolar damage; however, there is scarce information on the chronologic evolution of COVID-19 lung lesions. The primary aim of the study is to describe the chronology of lung pathologic changes in COVID-19 by using a post-mortem transbronchial lung cryobiopsy approach. Our secondary aim is to correlate the histologic findings with computed tomography patterns. SARS-CoV-2-positive patients, who died while intubated and mechanically ventilated, were enrolled. The procedure was performed 30 min after death, and all lung lobes sampled. Histopathologic analysis was performed on thirty-nine adequate samples from eight patients: two patients (illness duration < 14 days) showed early/exudative phase diffuse alveolar damage, while the remaining 6 patients (median illness duration-32 days) showed progressive histologic patterns (3 with mid/proliferative phase; 3 with late/fibrotic phase diffuse alveolar damage, one of which with honeycombing). Immunohistochemistry for SARS-CoV-2 nucleocapsid protein was positive predominantly in early-phase lesions. Histologic patterns and tomography categories were correlated: early/exudative phase was associated with ground-glass opacity, mid/proliferative lesions with crazy paving, while late/fibrous phase correlated with the consolidation pattern, more frequently seen in the lower/middle lobes. This study uses an innovative cryobiopsy approach for the post-mortem sampling of lung tissues from COVID-19 patients demonstrating the progression of fibrosis in time and correlation with computed tomography features. These findings may prove to be useful in the correct staging of disease, and this could have implications for treatment and patient follow-up.


Subject(s)
COVID-19/pathology , Fibrosis/pathology , SARS-CoV-2/physiology , Aged , Autopsy , COVID-19/diagnostic imaging , COVID-19/virology , Female , Fibrosis/diagnostic imaging , Fibrosis/virology , Humans , Lung/diagnostic imaging , Lung/pathology , Lung/virology , Male , Middle Aged , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL